

Improper Integrals

Last class we talked about bounded intervals of bounded functions. Now we generalise to unbounded intervals. and unbounded functions.

1. Remark: $[a, +\infty] = \bigcup_{b>1} [1, b]$.

2. Definition: Assume f is integrable. Then

$$\int_a^{+\infty} f(x) dx = \lim_{b \rightarrow +\infty} \int_a^b f(x) dx.$$

LHS only makes sense if RHS has a limit. In that case we say that $\int_a^{+\infty} f(x) dx$ exists/converges.

2.1. Example: $\int_a^{+\infty} x^\alpha dx$. For what α does our integral exist? If it exists, what's its value?

$$\int_1^b x^\alpha dx = \begin{cases} \frac{x^{\alpha+1}}{\alpha+1} \Big|_1^b = \frac{1}{\alpha+1} (b^{\alpha+1} - 1), & \alpha \neq -1, \\ \ln x \Big|_1^b = \ln b, & \alpha = -1. \end{cases}$$

↓

$$\int_1^b x^\alpha dx = \begin{cases} \frac{1 - b^{\alpha+1}}{-(\alpha+1)}, & \alpha < -1, \\ \ln b, & \alpha = -1, \\ \frac{b^{\alpha+1} - 1}{\alpha+1}, & \alpha > -1. \end{cases}$$

↓

$$\int_1^\infty x^\alpha dx = \begin{cases} -\frac{1}{\alpha+1}, & \alpha < -1, \\ \text{dives,} & \alpha \geq -1. \end{cases}$$

2.2. Remark: $x^\alpha \rightarrow 0$ when $x \rightarrow +\infty$. To make the improper exist $x^\alpha \rightarrow 0$ must be “fast” when $x \rightarrow +\infty$ (e.g. faster than x^{-12})

2.3. Remark: Whether $\int_a^{+\infty} f(x)dx$ converges or not does not depend on a .

3. Definition: Assume f is integrable over any $[b, a]$.

Suppose $f : [c, a] \rightarrow \mathbb{R}$. We define

$$\int_c^a f(x)dx = \lim_{b \rightarrow c^+} \int_b^a f(x)dx.$$

Again, LHS only makes sense if RHS has a limit. In that case we say that $\int_c^a f(x)dx$ exists/converges.

3.4. Example: $\int_0^1 x^\alpha dx$. For what α does our integral exist? If it exists, what's its value?

$$\int_b^1 x^\alpha dx = \begin{cases} \frac{x^{\alpha+1}}{\alpha+1} \Big|_b^1 = \frac{1}{\alpha+1}(1 - b^{\alpha+1}), & \alpha \neq -1, \\ \ln x \Big|_b^1 = -\ln b, & \alpha = -1. \end{cases}$$

↓

$$\int_b^1 x^\alpha dx = \begin{cases} \frac{1 - b^{\alpha+1}}{\alpha + 1}, & \alpha > -1, \\ -\ln b, & \alpha = -1, \\ \frac{1 - b^{\alpha+1}}{\alpha + 1}, & \alpha < -1. \end{cases}$$

↓

$$\int_0^1 x^\alpha dx = \begin{cases} \frac{1}{\alpha + 1}, & \alpha > -1, \\ \text{dies,} & \alpha \leq -1. \end{cases}$$

3.5. Remark: x^{-12} goes to $+\infty$ slower than x^{-2} .

4. Example: $\int_1^{+\infty} \frac{\sin x}{x^2} dx$.

It's hard to determine $\int_1^b \frac{\sin x}{x^2} dx$ with a closed form with b .

5. Criterion 1: If $|f(x)| \leq g(x)$ for large x then $\int_a^{+\infty} g(x) dx$ exists $\implies \int_a^{+\infty} f(x) dx$ exists.

Sketch of proof: We want to show that $\lim_{b \rightarrow +\infty} \int_a^b f(x) dx$ exists. By Cauchy's criterion, this is equivalent to saying that $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall b_1, b_2 > \delta$ we have

$|\int_{b_1}^{b_2} f(x) dx| < \epsilon$. Since $|f(x)| \leq g(x)$, we obtain

$|\int_{b_1}^{b_2} f(x) dx| \leq \int_{b_1}^{b_2} |f(x)| dx \leq \int_{b_1}^{b_2} g(x) dx$. Then since $\int_a^{+\infty} g(x) dx$ exists, we can choose δ such that $\int_{\delta}^{+\infty} g(x) dx < \epsilon$.

Then for all $b_1, b_2 > \delta$ we have $\int_{b_1}^{b_2} g(x) dx < \epsilon \implies |\int_{b_1}^{b_2} f(x) dx| < \epsilon$. Thus, $\int_a^{+\infty} f(x) dx$ exists.

5.6. Remark: all you need is $|f(x)| \leq g(x)$ for all $x > \delta$ for some sufficiently large δ .

5.7. Example: $\int_1^{+\infty} \frac{\ln x}{x^2} dx$.

Notice $|\frac{\ln x}{x^2}| < \frac{x^{12}}{x^2} = x^{-2}$.