
Improper Integrals
Last class we talked about bounded intervals of bounded functions. Now we

generalise to unbounded intervals. and unbounded functions.

1.  Remark: [a, +∞] = ⋃b>1[1, b].

2.  Definition: Assume f is integrable. Then
∫ +∞
a

f(x)dx = limb→+∞ ∫ b

a
f(x)dx.

LHS only makes sense if RHS has a limit. In that case we say that ∫ +∞
a

f(x)dx

exists/converges.

2.1.  Example: ∫ +∞

a
xαdx. For what α does our integral exist? If it

exists, what’s its value?

∫
b

1
xα dx =

⇓

∫
b

1
x
α
dx =

⇓

∫
∞

1
xα dx =

⎧⎪⎨⎪⎩ xα+1

α+1

b

1
= 1

α+1 (bα+1 − 1), α ≠ −1,

lnx|b1 = ln b, α = −1.∣⎧⎪⎨⎪⎩ 1 − bα+1

−(α + 1)
, α < −1,

ln b, α = −1,

bα+1 − 1

α + 1
, α > −1.

⎧⎪⎨⎪⎩−
1

α + 1
, α < −1,

diees, α ≥ −1.



2.2.  Remark: xα → 0 when x → +∞. To make the improper exist
xα → 0 must be “fast” when x → +∞ (e.g. faster than x−12)

2.3.  Remark: Whether ∫ +∞
a f(x)dx converges or not does not

depend on a.

3.  Definition: Assume f is integrable over any [b, a].
Suppose f : [c, a] → R. We define
∫ a

c
f(x)dx = limb→c+ ∫ a

b
f(x)dx.

Again, LHS only makes sense if RHS has a limit. In that case we say that ∫ a

c
f(x)dx

exists/converges.

3.4.  Example: ∫ 1
0
xαdx. For what α does our integral exist? If it

exists, what’s its value?

∫
1

b

xα dx =

⇓

∫
1

b

xα dx =

⇓

∫
1

0

xα dx =

3.5.  Remark: x−12 goes to +∞ slower than x−2.

4.  Example: ∫ +∞
1

sinx
x2 dx.

It’s hard to determine ∫ b

1
sinx
x2 dx with a closed form with b.

⎧⎪⎨⎪⎩ xα+1

α+1

1

b
= 1

α+1 (1 − bα+1), α ≠ −1,

lnx|1
b = − ln b, α = −1.∣⎧⎪⎨⎪⎩ 1 − bα+1

α + 1
, α > −1,

− ln b, α = −1,

1 − bα+1

α + 1
, α < −1.

⎧⎪⎨⎪⎩ 1

α + 1
, α > −1,

diees, α ≤ −1.



5.  Criterion 1: If |f(x)| ≤ g(x) for large x then ∫ +∞
a

g(x)dx

exists ⟹ ∫ +∞
a

f(x)dx exists.

Sketch of proof: We want to show that limb→+∞ ∫ b

a
f(x) dx exists. By Cauchy’s

criterion, this is equivalent to saying that ∀ϵ > 0, > 0 s.t. ∀b1, b2 >  we have
| ∫ b2

b1
f(x) dx| < ϵ. Since |f(x)| ≤ g(x), we obtain

| ∫ b2

b1
f(x) dx| ≤ ∫ b2

b1
|f(x)| dx ≤ ∫ b2

b1
g(x) dx. Then since ∫ +∞

a
g(x) dx exists, we can

choose  such that ∫ +∞ g(x) dx < ϵ.
Then for all b1, b2 >  we have ∫ b2

b1
g(x) dx < ϵ ⟹ | ∫ b2

b1
f(x) dx| < ϵ. Thus, ∫ +∞

a
f(x) dx

exists.

5.6.  Remark: all you need is |f(x)| ≤ g(x) for all x >  for some 
sufficiently large.

5.7.  Example: ∫ +∞

1
lnx
x2 dx.

Notice | lnx

x2 | < x12

x2 = x−2.


